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Optimization Analysis of Trajectory for Re-Entry Vehicle Using
Global Orthogonal Polynomial

Daewoo Lee™
Department of Aerospace Engineering, Pusan National University,

Jangjun-Dong, Kumjung-Ku, Pusan 609-735, Korea

We present a procedure for the application of global orthogonal polynomial into an atmo-

spheric re-entry maneuvering problem. This trajectory optimization is imbedded in a family of

canonically parameterized optimal control problem. The optimal control problem is transcribed

to nonlinear programming via global orthogonal polynomial and is solved a sparse nonlinear

optimization algorithm. We analyze the optimal trajectories with respect to the performance of

re-entry maneuver.
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1. Introduction

Future as well as present space projects, such
as laboratories stationed in orbit, will only be
attractive if transportation can be provided at low
operational cost. Economic alternatives to the
manned Space Shuttle are the development of the
reusable payload lunch vehicle. Their feasibilities
have been currently being investigated in the Unit-
ed States, EU. Although the Hope-X of Japan is
not a reusable launch vehicle, it is developing as
the first re-entry vehicle of Japan. A key issue is,
if safe and accurate flight profile from a lunch to
atmospheric re-entry and landing can be achieved
despite the vehicle’s several constraints, to avoid
an expensive recovery and long turnaround peri-
ods. Furthermore, the hot issue of atmospheric
re-entry is to deliver the re-entry vehicle to a
desired destination with an energy state sufficient
for approach and landing. For achieving this pro-
pose, adequate reference trajectory and guidance
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law are necessary. Typically, on-board guidance
systems use a nominal reference trajectory to pre-
dict the flight range and trajectory control to keep
the prediction within satisfactory permissible er-
ror bounds. In case of a predicted flight range
miss, the reference trajectory is modified (Lee and
Cho, 2000).

The problem of trajectory optimization (Betts,
1998) for re-entry vehicle maneuvering has been
not a few addressed in the literature. Baker et al.
used the Calculus Of Variation (COV) algorithms
to find optimal re-entry trajectory in 1971. B. P.
and Sng used the quasilinearization to get the
numerical solution of the constrained re-entry
vehicle trajectory in 1980. Lu in 1997 and Lee and
Cho in 2002 and 2004, presents the reference tra-
jectory by a sequential quadratic programming.

In a variety of trajectory optimization problem,
direct methods have been used extensively. In their
traditional collocation schemes such as Gauss-
Lobatto quadrature rules and Simpson’s rules, the
state equations are approximated by numerically
integrating the state equations over the subinter-
val, therefore the state constraints are not imposed
exactly at each nodes. The choice of global ortho-
gonal polynomial (Han et al., 1989 ; Fahroo and
Ross, 1998) for collocation optimal trajectory prob-
lem is recently used to overcome this disadvan-
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tage.

In this paper, we show the optimal reference
trajectories for re-entry vehicle maneuvering using
global orthogonal polynomial. These trajectories
are shown in both the case of “without heating
rate constraint” and “with heating rate constraint”.
The control parameters used are bank angle for
long period control and angle of attack for short
period control. We analyze the performance of
trajectories with respect to the maneuver of the
re-entry vehicle.

2. Maneuvering Re-Entry
Vehicle Problem

2.1 Description of the re-entry dynamics

This idea is demonstrated by arbitrarily choosing
a particular set of coordinates that describe the
state of the vehicle by the six-dimensional vector,
x=(R,V,7,6,0,¥) consisting of its radial posi-
tion, Earth relative speed, flight path angle, lati-
tude, longitude, heading angle respectively. The
equations of re-entry motion (Regan, 1993) for
space vehicles can be described under the follow-
ing assumptions.

(1) The earth is assumed to be a rotating sphere.

(2) The non-thrusting re-entry vehicle is as-
sumed to be a point mass from the vertical plane
of the earth.

With these assumptions, the dynamics of re-
entry (Vinh et al., 1980) are

R=Vsiny

V=—D—”S}§2”

+0F R cos ¢(sin 7 cos ¢—cos 7 sin ¢ sin ¢)

V7=Du+( W—%)%HQEV cos ¢ cos
+0F R cos ¢(cos 7 cos ¢—sin 7 sin ¢ sin @) (1)

q-ﬁ:Vcos ysin ¢
R

= V cos 7 cos ¢
Rcos ¢

J= Lsing  Vcos ycos §tan ¢
Veosy R
. . Q%R .
420 (tan y sin ¥ cos ¢—sin @) Vst ¢os ¥ sin ¢gcos ¢
_ pSrerZCD
D= 2m (2)
_0SrsV2Co
L= o (3)

where, D is the drag acceleration, L lift accelera-
tion, and y is the gravity constant. The angular
velocity of the rotation of earth is Qg. # is the
function of the bank angle as the control variable
and the vertical component of the lift-to-drag
ratio, and the bank angle ¢ is defined as the angle
between the lift vector and (R, V), C. and Cp
are the lift coefficient and drag coefficient, re-
spectively. Srer is the reference surface area, and
the mass of space vehicle.

The dynamic pressure (q) is defined as p 1/%/2.
The atmospheric density o is the exponentially
varying.

0=00 exp<—R;7:%) (4)

where ©p is the density at sea level, /=R — R is
the altitude, and /s is the density scale-height.
The lift and drag coefficients used in this analysis
are given as

Ce (a/) = CL0+ CLaa/

(5)
CD(CY) :CD0+ Coaa/—&- CDaz

where C., and Cp, are the zero-lift coefficient
and the zero-drag coefficient respectively. « is the
angle of attack.

Cr,=—0.207, C.,=1.676,
C0,=0.079, Cp,=—0.353, Cp,,=2.40

2.2 Path constraints

Inequality constraints can be imposed on se-
veral parameters during atmospheric re-entry. In
this study, we imposed inequality constraint on
heating rate, bank angle and angle of attack,
which are control inputs.
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o< q < {Gmax (7>
Omin< 0 < Omax (8)
Cnin< @ < Qmax (9>

The heating rate (Betts, 2001) is serious con-
straint in high altitude region, and is decided by
the performance of the protective heat tiles. It is
function of R, V, and a, and is given by

q(R,V,a)=q.(a) g-(R, V) (10)
qe=a1+ aza+ asd®+ asd?® ()
=blpbz Vos
where, a; (1=1,2,3,4) and b; (j=1,2,3) are con-
stants.

2.3 Performance index

In general, the performance index for re-entry
problem is chosen by the objective of mission.
For examples, total heating accumulated in the
airframe (Lee and Cho, 2002) is minimized to
minimize heating, the inclination of drag acceler-
ation is minimized to impose physical character-
istic of re-entry flight, and the amount of control
margin is maximized to correct for unpredictable
flight conditions, and so on.

In this study, we choose the final latitude as the
performance index to maximize the cross-range
for an equatorial orbit.

min J =min ¢ (¢;) (12)

2.4 Boundary conditions

In this study, the boundary conditions for the
maneuver of re-entry vehicle are defined that all
the initial conditions are completely specified,
while the only R, V,7y in the final conditions
are specified. The initial conditions are collected
to form a set of navigation parameters and final
conditions are target parameters for a TAEM
(Terminal Area Energy Management) . Therefore,
boundary conditions @[ x (#7), ¢,] =0 are given as

R (t) =7=6450.452X10° m
V (#) = Vo=7802.88 m/sec
y(t) =y0=—1deg (13)
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¢ (t) =po=0 deg
6 (%) =6=0deg
¥ (k) = =0 deg
R (tr) =7,=6395.588 X10° m
V(t;) = V=762 m/sec
(l‘f)=7f=—5 deg (14)
¢ (tr) =ps=Free
0 (t;) =0;=Free
¥ (tr) =y =Free

The initial time is zero and final time is free.

t=0, {,=Free (15)
2.5 Definition of optimal control Problem
The reference trajectory for the maneuvering

re-entry vehicle under consideration in this study

is computed by solving the following optimal
control problem (Calise and Leung, 1994). Thus
this problem is summarized to find the control
histories of bank angle and angle of attack on the
time interval £&[0, {;] that minimize the objec-
tive functional of Eq. (12) subject to the differen-
tial equations of Egs. (1) ~(6), the path con-
straints of Egs. (7) ~(9), and boundary condi-

tions of Egs. (13) ~ (14).

The bank angle is used for control in long period
deviation. On the contrary, to minimize the effect
of the bank reversals and other transient effects
such as density gradients, a change in angle of
attack from the reference trajectory can be com-
manded to compensate for short period drag tra-
jectory deviations from the reference trajectory.

u(t)=[o(t), a(t)] (16)
The Hamiltonian function is defined as
H=A&Vsiny+iy [%
+ Q% R cos ¢(sin 7 cos ¢—cos 7 sin ¢ sin w)}

1% RV R
+Q§%cos ¢(cos 7 cos ¢+sin y sin ¢ sin ¢)} (17)

A, {DA”‘I'( V=) BT 20, cos g cos ¥
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[t
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"L Veosy R
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R .
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When Hamiltonian function is used, the co-state
equations are defined as

Ae=—A[2p/R¥siny
+ Q% cos ¢(sin y cos ¢—cos 7 sin ¢ sin @) ]
=M= (V/R* =24/ K%/ V) cos y
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—*/V/cos y cos ¢ sin ¢ cos ¢]

(18a)
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(18b)
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(18c)
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+0Q*R/V/cos 7 cos ¢ sing]

(18d)

Ae=0 (18e)

A= Q*R cos ¢ cos y cos ¥ sin ¢
—A[—2Qsin ¢ cos ¢
+ 2R/ V cos $sin ¥ cos ¢ sin @]
=V cos 7 cos #/R+AV cos ysin ¥/ R/cos ¢
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(18f)

and the auxiliary function, @=¢=p7¢ is
O=¢=1v1(R,—2098.29 X 10%)

19
(V2500 +oa(7,455) 1Y)
From the transversality conditions, A(#;) =[00/
0x]:=+, we obtain the following co-state terminal
conditions for the re-entry trajectory :

A= (tr) = w1, Av(ty) = va, A (tf) = s,

(20)
Ao (tr) =1, Ao (tr) =2 (8) =0

where v is the constant Lagrange multiplier. Fur-
thermore, the additional transversality condition
for the Hamiltonian function should be satisfied
at fy.

00 } _
Ry =0 (21)
From Eq. (21), we get the following condition as
another boundary equation.

H (#)=0 (22)
3. Numerical Implications

Many numerical algorithms to solve optimal
control problems have been developed, but they
can be grouped into two major categories : indi-
rect and direct methods. Indirect methods are theo-
retically based on Pontryagin’s minimum princi-
ple, which characterizes the set of optimal states
and controls in terms of the solution of a bound-
ary value problem. One of the indirect methods
becomes a second order method and yields solu-
tions of high precision, Hence, it is very sensitive
to small change in co-state initial conditions. The
indirect methods have the associated difficulties
caused by instability of the initial value problem
for the system of differential equations and by the
requirement for good initial guesses for iterative
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solutions of nonlinear problem. Therefore, these
methods are not typically used to solve complex
problem due to their inherent small radii of con-
vergence and the additional labor required in
deriving the optimal conditions.

On the contrary, in recent years, direct methods
have been used extensively in a variety of trajec-
tory optimization problems (Betts, 1998 ; Hull,
1997). Direct methods are based on discretizing
the control and/or state variable time history at
the nodes of discretization, and transforming the
optimal control problem to a nonlinear programming
(NLP) problem and then solving the resulting
nonlinear programming problem. Their advan-
tage over indirect methods is their wider radius of
convergence to an optimal solution. In addition,
since the necessary conditions do not have to be
derived, the direct methods can be quickly used to
solve a number of practical trajectory optimiza-
tion problems.

For better numerical conditioning of the tra-
jectory optimization process, R is normalized by
the Earth radius, Rz. Vis normalized by /g R,
D and L are normalized by g, and Qg is nor-
malized by VRe.

In this paper, a numerical optimization solver,
SNOPT is used to solve an optimization for re-
entry vehicle maneuvering. For the re-entry prob-
lem, there are 12 differential equations describing
the states [Eq. (1) ], and co-states [Eq. (18) ], and
13 unknowns [Ag (%), Av (fo), Ay (fo), A (fo) , Ao (o),
Ao(B), vi, va, vs, D(tr), O(ts), ¥ (¢), tr] and 13
boundary conditions [Eq. (13), R(t,), V(¢),7(¢),
As(tr), Ae(t), Au(tr), Eq. (22) ].

To formulate this re-entry problem, the nu-
merical techniques in Ref. Bryson are adopted
and modified. The unknown parameters [y, ¢,
unknown initial co-states] are guessed initially,
and the state and co-state equations are integrated
to final time by implicating the controls. Correc-
tions to the guessed values and missing initial
conditions are assumed to be satisfied if the ter-
minal condition norm is less than 107", A trial-
and-error strategy is used until good initial co-
state values are obtained.
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4. Collocation Using Global
Orthogonal Polynomial

The time histories of states or controls can be
obtained by using an interpolation. In most col-
lection schemes, linear or cubic splines are used
as the interpolating polynomials. At present, in-
stead of using piecewise-continuous polynomials
as the interpolant between sub-interval, global
orthogonal polynomials such as Legendre and
Chebyshev polynomial (Lee, 2003) can be used
widely. These are used originally in spectral
methods for solving fluid dynamics problem, but
their use in solving optimal control problem has
created a new way of transforming them to NLP
problem, because they have close relationship
which can be used to derive simple rules for trans-
forming the original optimal control problem to
algebraic equations. We use the Legendre poly-
nomial in this paper.

The basic idea of this method is to seek ap-
proximations for the state, co-state and control
functions in terms of their values at some carefully
chosen node points which are called Legendre-
Gauss-Lobatto (LGL). LGL points have a merit
of small error with respect to the least square
method. These have fixed end points at —1 and 1.

(r—m) t+ (r— )

; (23

t€llat]=-11] =

This method is developed by Elnagar, Fahroo
and Ross, and has an objective to transcribe the
continuous time optimal control problem into a
nonlinear programming problem. It is beyond the
scope of this paper to provide a detailed descrip-
tion of the Pseudospectral Legendre. A conclusive
summary of this method is briefly provided here
in order to maintain continuity.

Let Ly be the Legendre polynomial of degree
on the interval [—1, —1]. In the Legendre collo-
cation approximation of the state and co-state
equations, we use the LGL points, #;, /=0,1,2,
---,IN which are given by fp=—1,¢=1. For 1<
/< N—1,t are the zeros of Ly, the derivative of
the Legendre polynomial Ly. The continuous
states, co—states, and control variables by N-order
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Legendre polynomial are,
() =2 x (1) du(8)
W (8) = u(t) pu(t) (24)

AN(t>=§/1(n) @u(2)

=0

Since the ¢,(#) satisfies the characteristic of the
Kronecker delta

x”(h) =x(tz> =dar
u™ (t) =u(t) =be (25)
AN(t) =At) =ax

To express the time derivative of the state and
co-state in terms of the state and co-state at the
collocation points respectively, we differentiate
the state and co-state in Eq. (24) which results in
a matrix multiplication of the following forms :

2N (t) Zﬁéffsz(l‘k)x (t) Zﬁs’DkLXUz) =d
i : 26
AN (t) =§)¢Sz(l‘k)/1(tz> :;})DMUI) =

where Dy, is the differentiation matrix with size of
(N+1) X (N+1).
Minimize the performance index :

TV (x,u) =M (xn, z7)

Tr— T <
+7f2 g 2L<xk7uk> We
£=0

(27)

subject to the state equations, boundary condi-
tions, and inequality constraints. w is the weight.

TSRS (n, un) — =0 (28)
¢l ao, ] =0, ¢law, 7r] =0 (29)
g(an, br) <0 (30)

where, node number £=0,1,2,3,---, N

5. Results of the Re-Entry
Vehicle Maneuver

We start optimization by guess of the unknown
parameters. The physical parameters used in this
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Table 1 Physical parameters
Parameter Value
Srer 250 m?
0o 1.225 kg/m?®
Re 6.3713X10° m
hs 7254.24 m
(max 794.986 KW /m?
Qr 7.292e-5 rad/s
o 3.9822 X 10" m*/s?
m 102279 kg
Omin -7
Omax T
Omin 0
Qmax T

paper are shown in Table 1.

The results in Figs. 1~10 are shown in both
the case of “Without heating rate constraint” and
“With heating rate constraint”. Final time of the
former is 2370 sec, the latter is 2590 sec. It is seen
from Fig. 1 that the altitude without heating rate
constraint has actual oscillation maneuvers of
three or four times as compared with the altitude
with heating rate constraint during atmospheric
re—entry. These maneuvers enable the re-entry
vehicle to fly in a high density region in the same
times due to no heating rate constraint. During
the serial fall in altitude, Earth-relative speed in
Fig. 2 is reduced so that the vehicle can arrive at
the TAEM (Terminal Area Energy Management)
interface with the prescribed final speed of 2500
ft/s. Fig. 3 represents the time histories of the
flight path angle. Figs. 4 and 5 give geometric in-
formations for the optimal trajectories. Moreover,
as alluded to earlier, the latitudes in Fig. 4 are
considered as the performance index. The latitude
of —37 degree in the case of “Without heating
rate constraint” is smaller than the latitude of
—34.64 degree in the other case. The difference of
2.36 degree is due to an atmospheric density of
application of heating rate constraint. In Fig. 6,
the optimal heading angle is represented.

The next key feature of the results is the time
histories of bank and angle of attack which are
shown in Figs. 7 and 8. It can be seen that, the
initial bank angle of the case without heating rate
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constraint is 115 degree which larger then the

case with heating rate constraint, because altitude
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Fig. 6 Heading angles vs time

does not decrease monotonically but actually has

sudden drops in altitude. The reason that the
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Fig. 8 Angle of attacks vs time

altitude has several drop maneuvers is because the
short period of flying time can make the minimi-
zation of latitude. On the contrary, in the case
with heating rate constraint, the angle of attack
increases twice so dramatically before approach-
ing to the final time. This reason is because the
re-entry vehicle needs to deplete speed before
arriving at the final position in order to satisfy the
condition at TAEM interface. The bank angle is
bounded within a range of 115 degree and the
angle of attack 9 degree due to the characteristic
of period.

Fig. 9 shows the time histories of heating rate.
In the case with heating rate constraint, we can
verify the sudden change of the bank angle and
angle of attack near 1700 sec as well as the heat-
ing rate. Fig. 10 gives that a low density should be

. . .
] 500 1000 1500 2000 2500 3000
time (sec)

Fig. 10 Dynamic pressures vs time

sustained until 1700 sec in the case with heating
rate constraint.

Fig. 11 shows the time history of Hamiltonian.
Since for re-entry problem the Hamiltonian is not
an explicit function of time and terminal time is
free, the Hamiltonian along an optimal trajectory
must be zero. The result obtained from the case
without heating rate gives strong evidence that
trajectories obtained the optimization using glob-
al orthogonal polynomial are close to an optimal
trajectories. On the contrary, the case with heating
rate brings forth a little optimal error. However, it
is permissible with respect to scale.

Fig. 12 shows both the dynamic pressure and
the altitude of the case without heating rate con-
straint. From this figure, we know that several
local maxima in altitude occur at point where the
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Fig. 12 Dynamic pressure and altitude vs time

dynamic pressure is also local minima because
densities in these points are local minima.

6. Conclusions

The performance analyses of optimal trajec-
tories for re-entry maneuver via global ortho-
gonal polynomial are presented. The results are
divided as both the case of “without heating rate
constraint” and “with heating rate constraint”.
The case without heating rate constraint has hasty
variations in the most states as well as altitude
and short final time. However, in an angle of
attack, the case with heating rate constraint has a
many hasty variations since the heating rate con-
straint should be satisfied. Although the case with
heating rate constraint does not approach to zero
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exactly, the results of the Hamiltonian gives
strong evidence that the trajectories obtained via
global orthogonal polynomial is close to optimal
trajectories.
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